AUDITORY SPACE PERCEPTION – ACCURACY OF DISTANCE AND DIRECTION LOCALIZATION IN BLIND AND SIGHTED
DOI:
https://doi.org/10.19090/pp.2017.2.227-244Ključne reči:
blind, auditory sense, spatial sound localization, localization accuracyApstrakt
Perception of space is based on a synthesis of information from multiple senses. During space perception, blind people mostly rely on information from auditory and haptic senses. The aim of present study was to verify the assumption that auditory sense is more sensitive in blind, as a consequence of intensive usage. Sensitivity is measured trough accuracy in spatial localization of auditory source. We had 15 blind and 15 sighted participants in research. They were exposed to a specific sound in 3 sessions, from 10 different positions, gained by combining two distances (1 m and 3 m) and five directions (straight ahead, 15° and 30° left and right from the participant). Participants’ task was to listen to a sound and then to detect whether it was positioned on a nearer of further distance and whether it was from straight ahead, left or right from them. Analysis showed that perceived stimuli distance accuracy depends on stimuli distance. Participants were more precise in estimating distance for those stimuli which were further away. Perceived stimuli direction accuracy depends on the stimuli direction in such a way that the more extreme left or right stimulus is, participants are more certain in estimating its direction. However, perceived stimuli direction accuracy also depends on whether the participant is blind or sighted, in such a way that blind participants are better in the localization of sound direction. Hence, between blind and sighted participants there are some differences in sound source localization accuracy, which supports the claim that auditory sense sensitivity increases in blind participants.
Metrics
Reference
Ando, Y. (2009). Temporal and spatial aspects of sounds and sound fields. In Auditory and Visual Sensations (pp. 9–24). Springer New York.
Bond, N. J., & Dearborn, W. F. (1917). The auditory memory and tactual sensibility of the blind. Journal of Educational Psychology, 8(1), 21–26.
Bonino, D., Ricciardi, E., Sani, L., Gentili, C., Vanello, N., Guazzelli, M., . . . Pietrini, P. (2008). Tactile spatial working memory activates the dorsal extrastriate cortical pathway in congenitally blind individuals. Archives Italiennes de Biologie, 146(3–4),133–146.
Byrne, R. W., & Salter, E. (1983). Distances and directions in the cognitive maps of the blind. Canadian Journal of Psychology, 37, 293–299.
Collignon, O., & Volder, G. De A. (2009). Further evidence that congenitally blind participants react faster to auditory and tactile spatial targets. Canadian Journal of Experimental Psychology, 63(4), 287–293. doi:10.1037/a0015415
Collignon, O., Renier, L., Bruyer, R., Tranduy, D., & Veraart, C. (2006). Improved selective and divided spatial attention in early blind subjects. Brain Research, 1075, 175–182.
Collignon, O., Voss, P., Lassonde, M., & Lepore, F. (2009). Cross-modal plasticity for the spatial processing of sounds in visually deprived subjects. Experimental Brain Research, 192, 343–358. doi:10.1007/s00221-008-1553-z
Cvetković, Ž. (1989). Metodika vaspitno-obrazovnog rada sa slepim licima: savremena metoda čitanja i pisanja slepe dece na Brajevom pismu. Beograd: Naučna knjiga.
Eimer, M. (2004). Multisensory integration: How visual experience shapes spatial perception. Current Biology, 14, 115–117. DOI 10.1016/j.cub.2004.01.018
Field, J., DiFranco, D., Dodwell, P., & Muir, D. W. (1979). Auditory-visual coordination of 2 1/2 month-old infants. Infant Behavior & Development, 2, 113–122. doi:10.1016/S0163-6383(79)90001-8
Fisher, G. H. (1964). Spatial localization by the blind. American Journal of Psychology, 77, 2–14. doi:10.2307/1419267
Goldreich, D., & Kanics, I. M. (2003). Tactile acuity is enhanced in blindness. The Journal of Neuroscience, 23(8), 3439–3445.
Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15, 20–25. doi:10.1016/0166-2236(92)90344-8
Haxby, J. V., Grady, C. L., Horwitz, B., Ungerleider, L. G., Mishkin, M., Carson, R. E., . . . Rapoport, S. I. (1991). Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proceedings of the National Academy of Sciences, 88, 1621–1625.
Howard, I. P., & Templeton, W. B. (1966). Human spatial orientation. London: Wiley.
Hugdahl, K., Ek, M., Takio, F., Rintee, T., Tuomainen, J., Haarala, C., & Hämäläinen, H. (2004). Blind individuals show enhanced perceptual and attentional sensitivity for identification of speech sounds. Cognitive Brain Research, 19, 28–32. doi:10.1016/j.cogbrainres.2003.10.015
Humphrey, G. K., Dodwell, P. C., Muir, D. W., & Humphrey, D. E. (1988). Can blind infants and children use sonar sensory aids? Canadian Journal of Psychology, 42(2), 94–119.
Kujala, T., Alho, K., Kekoni, J., Hamalainen, H., Reinikainen, K., Salonen, O., . . . Näätänen, R. (1995). Auditory and somatosensory event-related brain potentials in early blind humans. Experimental Brain Research, 104, 519–526.
Kujala, T., Lehtokoski, A., Alho, K., Kekoni, J., & Näätänen, R. (1997). Faster reaction times in the blind than sighted during bimodal divided attention. Acta Psychologica, 96, 75– 82.
Kujala, T., Palva, M. J., Salonen, O., Alku, P., Huotilainen, M., Jarvinen, A., & Näätänen, R. (2005). The role of blind humans’ visual cortex in auditory change detection. Neuroscience Letters, 379, 127–131. doi:10.1016/j.neulet.2004.12.070
Pasqualotto, A., & Proulx, M.J. (2012). The role of visual experience for the neural basis of spatial cognition. Neuroscience & Biobehavioral Reviews, 36, 1179–1187. doi:10.1016/j.neubiorev.2012.01.008
Renier, L. A., Anurova, I., De Volder, A. G., Carlson, S., VanMeter, J., & Rauschecker, J. P. (2010). Preserved functional specialization for spatial processing in the middle occipital gyrus of the early blind. Neuron, 68, 138–148. doi:10.1016/j.neuron.2010.09.021.
Röder, B., Rösler, F., & Neville, H. J. (2001). Auditory memory in congenitally blind adults: A behavioral-electrophysiological investigation. Cognitive Brain Research, 11, 289–303. doi:10.1016/S0926-6410(01)00002-7
Röder, B., Rösler, F., Hennighausen, E., & Näcker, F. (1996). Event-related potentials during auditory and somatosensory discrimination in sighted and blind human subjects. Brain Research Cognitive Brain Research, 4, 77–93. doi:10.1016/0926-6410(96)00024-9
Seashore, C.E., & Ling, T.L. (1918). The comparative sensitiveness of blind and seeing persons. Psychological Monographs, 25(2), 148–158. doi:10.1037/h0093120
Voss, P., Lassonde, M., Gougoux, F., Fortin, M., Guillemot, J. P., & Lepore, F. (2004). Early and late onset blind individuals show supranormal auditory abilities in far space. Current Biology, 14, 1734–1738. doi:101016/j.cub.2004.09.051
Wanet, M. C., & Veraart, C. (1985). Processing of auditory information by the blind in spatial localization tasks. Perception & Psychophysics, 38, 91–96. doi:10.3758/BF03202929
Weeks, R., Horwitz, B., Aziz-Sultan, A., Tian, B., Wessinger, C. M., Cohen, L. G., . . . Rauschecker, J. P. (2000). A positron emission tomographic study of auditory localization in the congenitally blind. The Journal of Neuroscience, 20, 2664–2672.