Daltonization Enhances Working Memory Performance in Color Vision-deficient Observers
DOI:
https://doi.org/10.19090/pp.v18i4.2610Keywords:
Color Vision, Color Vision Deficiency, Working memory, Daltonization, Color correctionAbstract
Daltonization methods are image adaptation techniques that adjust screen colors to aid people with color vision deficiency (CVD). Though their effectiveness in boosting the hue’s dissimilarity has been documented, it was not entirely clear to what extent they improve color processing. The purpose of our study was to measure the direct contribution of daltonization to color working memory.
Two different types of daltonization methods were tested: severity–based (SB) enhancing red-green contrast and type-based (TB) enhancing blue-yellow contrast. We used simple behavioral tasks while measuring speed and accuracy. Participants in our experiments were asked to find the target color among the two presented choices (2AFC task). The colors were either presented simultaneously (perception task) or sequentially (memory task).
Both daltonization methods significantly improved CVD participants’ performance on both tasks and with both measures, with stronger effects found in the memory task. The effects of the TB method were robust across tasks, while the effects of the SB method were smaller and dependent on the level of enhanced red-green contrast when colors needed to be remembered.
We confirmed the previously reported effects of daltonization and demonstrated that these effects extend to the level of short-term retention of color information. Based on the differences in the effects of the two daltonization methods under varying cognitive demands, we identified the specific conditions under which each method supports cognitive functions. Consequently, our findings enable precise application decisions: using daltonization for promoting fast discrimination vs. enhancing memory during material learning.
References
Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In: G. Bower. (Ed.), The psychology of learning and motivation (pp. 47-90). Academic Press. DOI: https://doi.org/10.1016/S0079-7421(08)60452-1
Bae, G.-Y., Olkkonen, M., Allred, S. R., & Flombaum, J. I. (2015). Why some colors appear more memorable than others: A model combining categories and particulars in color working memory. Journal of Experimental Psychology: General, 144(4), 744–763. https://doi.org/10.1037/xge0000076 DOI: https://doi.org/10.1037/xge0000076
Birch, J. (2012). Worldwide prevalence of red-green color deficiency. JOSA A, 29(3), 313–320. https://doi.org/10.1364/JOSAA.29.000313 DOI: https://doi.org/10.1364/JOSAA.29.000313
Boehm, A. E., MacLeod, D. I. A., & Bosten, J. M. (2014). Compensation for red-green contrast loss in anomalous trichromats. Journal of Vision, 14(13), 19–19. https://doi.org/10.1167/14.13.19 DOI: https://doi.org/10.1167/14.13.19
Bonanomi, C., Sarioli, S., Mascetti, S., Gianini, G., Alampi, V., Lanaro, M. P., & Rizzi, A. (2017). An App-based Assessment of SiChaRDa, an Image Enhancer for Color-Blind People. Journal of Imaging Science and Technology, 61(4), 040405-1-040405–040409. https://doi.org/10.2352/J.ImagingSci.Technol.2017.61.4.040405 DOI: https://doi.org/10.2352/J.ImagingSci.Technol.2017.61.4.040405
Bonnardel, V. (2006). Color naming and categorization in inherited color vision deficiencies. Visual Neuroscience, 23(3–4), 637–643. https://doi.org/10.1017/S0952523806233558 DOI: https://doi.org/10.1017/S0952523806233558
Brettel, H., Viénot, F., & Mollon, J. D. (1997). Computerized simulation of color appearance for dichromats. JOSA A, 14(10), 2647–2655. https://doi.org/10.1364/JOSAA.14.002647 DOI: https://doi.org/10.1364/JOSAA.14.002647
Chen, L., Zhu, Z., Huang, W., Go, K., Chen, X., & Mao, X. (2024). Image recoloring for color vision deficiency compensation using Swin transformer. Neural Computing and Applications, 36(11), 6051–6066. https://doi.org/10.1007/s00521-023-09367-2 DOI: https://doi.org/10.1007/s00521-023-09367-2
Commission Internationale de l'Eclairage. (2020). CIE 240:220 - Enhancement of images for colour-deficient observers. CIE Central Bureau.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Routledge.
Davidoff, C. (2015). Cone opsin gene variants in color blindness and other vision disorders (Doctoral dissertation, University of Washington).
Fairchild, M. (2013). Color appearance models (3rd ed.). Wiley. DOI: https://doi.org/10.1002/9781118653128
Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. https://doi.org/10.3758/BF03193146 DOI: https://doi.org/10.3758/BF03193146
Flatla, D., & Gutwin, C. (2012). SSMRecolor: Improving recoloring tools with situation-specific models of color differentiation. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2297–2306. https://doi.org/10.1145/2207676.2208388 DOI: https://doi.org/10.1145/2207676.2208388
Gegenfurtner, K. R., Wichmann, F. A., & Sharpe, L. T. (1996). The contribution of colour to recognition memory in normal and colour-deficient observers. (Report No. 25). Max Planck Institute for Biological Cybernetics.
Keresteš, N. M., Ɖurđević, S., Novaković, D., Zarić, M., Kašiković, N., Dedijer, S., & Vladić, G. (2023). Customized daltonization: Adaptation of different image types for observers with different severities of color vision deficiencies. Universal Access in the Information Society, 22(2), 351–367. https://doi.org/10.1007/s10209-021-00847-7 DOI: https://doi.org/10.1007/s10209-021-00847-7
Kotera, H. (2012). Optimal Daltonization by Spectral Shift for Dichromatic Vision. Color and Imaging Conference, 20(1), 302–308. https://doi.org/10.2352/CIC.2012.20.1.art00054 DOI: https://doi.org/10.2352/CIC.2012.20.1.art00054
Kuhn, G. R., Oliveira, M. M., & Fernandes, L. (2008). An Efficient Naturalness-Preserving Image-Recoloring Method for Dichromats. IEEE Transactions on Visualization and Computer Graphics, 14(6), 1747–1754. https://doi.org/10.1109/TVCG.2008.112 DOI: https://doi.org/10.1109/TVCG.2008.112
Machado, G. M., Oliveira, M. M., & Fernandes, L. (2009). A Physiologically-based Model for Simulation of Color Vision Deficiency. IEEE Transactions on Visualization and Computer Graphics, 15(6), 1291–1298. https://doi.org/10.1109/TVCG.2009.113 DOI: https://doi.org/10.1109/TVCG.2009.113
Milić, N. (2016). Model optimizacije slike za korisnike sa poremećajem viđenja boja [Doctoral dissertation, University of Novi Sad]. National Repository of Dissertations in Serbia. https://nardus.mpn.gov.rs/handle/123456789/5137
Nagy, B. V., Németh, Z., Samu, K., & Ábrahám, G. (2014). Variability and systematic differences in normal, protan, and deutan color naming. Frontiers in Psychology, 5, 1416. https://doi.org/10.3389/fpsyg.2014.01416 DOI: https://doi.org/10.3389/fpsyg.2014.01416
Neitz, J., & Neitz, M. (2011). The genetics of normal and defective color vision. Vision Research, 51(7), 633–651. https://doi.org/10.1016/j.visres.2010.12.002 DOI: https://doi.org/10.1016/j.visres.2010.12.002
Neitz, M., & Neitz, J. (2000). Molecular Genetics of Color Vision and Color Vision Defects. Archives of Ophthalmology, 118(5), 691–700. https://doi.org/10.1001/archopht.118.5.691 DOI: https://doi.org/10.1001/archopht.118.5.691
Pridmore, R. W. (2014). Orthogonal Relations and Color Constancy in Dichromatic Colorblindness. PLoS ONE, 9(9), e107035. https://doi.org/10.1371/journal.pone.0107035 DOI: https://doi.org/10.1371/journal.pone.0107035
Ribeiro, M., & Gomes, A. J. P. (2020). Recoloring Algorithms for Colorblind People: A Survey. ACM Computing Surveys, 52(4), 1–37. https://doi.org/10.1145/3329118 DOI: https://doi.org/10.1145/3329118
Shen, X., Feng, J., & Zhang, X. (2021). A content‐dependent Daltonization algorithm for colour vision deficiencies based on lightness and chroma information. IET Image Processing, 15(4), 983–996. https://doi.org/10.1049/ipr2.12079 DOI: https://doi.org/10.1049/ipr2.12079
Shepard, R. N., & Cooper, L. A. (1992). Representation of Colors in the Blind, Color-Blind, and Normally Sighted. Psychological Science, 3(2), 97–104. https://doi.org/10.1111/j.1467-9280.1992.tb00006.x DOI: https://doi.org/10.1111/j.1467-9280.1992.tb00006.x
Simon-Liedtke, J. T., & Farup, I. (2016). Evaluating color vision deficiency daltonization methods using a behavioral visual-search method. Journal of Visual Communication and Image Representation, 35, 236–247. https://doi.org/10.1016/j.jvcir.2015.12.014 DOI: https://doi.org/10.1016/j.jvcir.2015.12.014
Simon-Liedtke, J. T., Farup, I., & Laeng, B. (2015, February). Evaluating color deficiency simulation and daltonization methods through visual search and sample-to-match: SaMSEM and ViSDEM. In Color Imaging XX: Displaying, Processing, Hardcopy, and Applications (Vol. 9395, pp. 288-296). SPIE. https://doi.org/10.1117/12.2079504 DOI: https://doi.org/10.1117/12.2079504
Uchikawa, K. (2014). Categorical color perception of color normal and deficient observers. Optical Review, 21(6), 911–918. https://doi.org/10.1007/s10043-014-0144-4 DOI: https://doi.org/10.1007/s10043-014-0144-4
Witzel, C., & Gegenfurtner, K. R. (2018). Color Perception: Objects, Constancy, and Categories. Annual Review of Vision Science, 4(1), 475–499. https://doi.org/10.1146/annurev-vision-091517-034231 DOI: https://doi.org/10.1146/annurev-vision-091517-034231
Wyszecki G., & Stiles, W. (2000). Color science: Concepts and methods, quantitative data and formulae (2nd ed.). Wiley.
Zhou, H., Huang, W., Zhu, Z., Chen, X., Go, K., & Mao, X. (2024). Fast image recoloring for red–green anomalous trichromacy with contrast enhancement and naturalness preservation. The Visual Computer, 40(7), 4647–4660. https://doi.org/10.1007/s00371-024-03454-8 DOI: https://doi.org/10.1007/s00371-024-03454-8
Zhu, Z., Toyoura, M., Go, K., Fujishiro, I., Kashiwagi, K., & Mao, X. (2019). Naturalness- and information-preserving image recoloring for red–green dichromats. Signal Processing: Image Communication, 76, 68–80. https://doi.org/10.1016/j.image.2019.04.004 DOI: https://doi.org/10.1016/j.image.2019.04.004
Zhu, Z., Toyoura, M., Go, K., Kashiwagi, K., Fujishiro, I., Wong, T.-T., & Mao, X. (2022). Personalized Image Recoloring for Color Vision Deficiency Compensation. IEEE Transactions on Multimedia, 24, 1721–1734. https://doi.org/10.1109/TMM.2021.3070108 DOI: https://doi.org/10.1109/TMM.2021.3070108
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ivana Jakovljev, Neda Milić-Keresteš, Sunčica Zdravković

This work is licensed under a Creative Commons Attribution 4.0 International License.
